FIB-SEM Tomography Probes the Mesoscale Pore Space of an Individual Catalytic Cracking Particle
نویسندگان
چکیده
The overall performance of a catalyst particle strongly depends on the ability of mass transport through its pore space. Characterizing the three-dimensional structure of the macro- and mesopore space of a catalyst particle and establishing a correlation with transport efficiency is an essential step toward designing highly effective catalyst particles. In this work, a generally applicable workflow is presented to characterize the transport efficiency of individual catalyst particles. The developed workflow involves a multiscale characterization approach making use of a focused ion beam-scanning electron microscope (FIB-SEM). SEM imaging is performed on cross sections of 10.000 μm2, visualizing a set of catalyst particles, while FIB-SEM tomography visualized the pore space of a large number of 8 μm3 cubes (subvolumes) of individual catalyst particles. Geometrical parameters (porosity, pore connectivity, and heterogeneity) of the material were used to generate large numbers of virtual 3D volumes resembling the sample's pore space characteristics, while being suitable for computationally demanding transport simulations. The transport ability, defined as the ratio of unhindered flow over hindered flow, is then determined via transport simulations through the virtual volumes. The simulation results are used as input for an upscaling routine based on an analogy with electrical networks, taking into account the spatial heterogeneity of the pore space over greater length scales. This novel approach is demonstrated for two distinct types of industrially manufactured fluid catalytic cracking (FCC) particles with zeolite Y as the active cracking component. Differences in physicochemical and catalytic properties were found to relate to differences in heterogeneities in the spatial porosity distribution. In addition to the characterization of existing FCC particles, our method of correlating pore space with transport efficiency does also allow for an up-front evaluation of the transport efficiency of new designs of FCC catalyst particles.
منابع مشابه
Specimen preparation for correlating transmission electron microscopy and atom probe tomography of mesoscale features.
Atom-probe tomography (APT) provides atomic-scale spatial and compositional resolution that is ideally suited for the analysis of grain boundaries. The small sample volume analyzed in APT presents, however, a challenge for capturing mesoscale features, such as grain boundaries. A new site-specific method utilizing transmission electron microscopy (TEM) for the precise selection and isolation of...
متن کاملMicron to Millimeter Upscaling of Shale Rock Properties Based on 3d Imaging and Modeling
3D tomographic data at various scales is increasingly available through the wide adoption of CT (Micro Computed Tomography) and FIB-SEM (Focused Ion Beam Scanning Electron Microscopy) technologies. However, upscaling these observations is very challenging. This paper provides a template of an upscaling protocol between FIB-SEM data on a micron sized sample and CT data on the same sample regio...
متن کاملAssessment of the 3 D Pore Structure and Individual Components of Preshaped Catalyst Bodies by X-Ray Imaging
Porosity in catalyst particles is essential because it enables reactants to reach the active sites and it enables products to leave the catalyst. The engineering of composite-particle catalysts through the tuning of pore-size distribution and connectivity is hampered by the inability to visualize structure and porosity at critical-length scales. Herein, it is shown that the combination of phase...
متن کاملThree-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography.
Three-dimensional (3D) data represent the basis for reliable quantification of complex microstructures. Therefore, the development of high-resolution tomography techniques is of major importance for many materials science disciplines. In this paper, we present a novel serial sectioning procedure for 3D analysis using a dual-beam FIB (focused ion beam). A very narrow and reproducible spacing bet...
متن کاملX-ray Fluorescence Tomography of Aged Fluid-Catalytic-Cracking Catalyst Particles Reveals Insight into Metal Deposition Processes
Microprobe X-ray fluorescence tomography was used to investigate metal poison deposition in individual, intact and industrially deactivated fluid catalytic cracking (FCC) particles at two differing catalytic life-stages. 3 D multi-element imaging, at submicron resolution was achieved by using a large-array Maia fluorescence detector. Our results show that Fe, Ni and Ca have significant concentr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016